Factoring Fact-Checks:
Structured Information Extraction from Fact-Checking Articles

Shan Jiang
Northeastern University
sjlang@ccs.neu.edu

Abe Ittycheriah®
Google Research
aittycheriah@google.com

ABSTRACT

Fact-checking, which investigates claims made in public to arrive at
a verdict supported by evidence and logical reasoning, has long been
a significant form of journalism to combat misinformation in the
news ecosystem. Most of the fact-checks share common structured
information (called factors) such as claim, claimant, and verdict.
In recent years, the emergence of ClaimReview as the standard
schema for annotating those factors within fact-checking articles
has led to wide adoption of fact-checking features by online plat-
forms (e.g., Google, Bing). However, annotating fact-checks is a
tedious process for fact-checkers and distracts them from their
core job of investigating claims. As a result, less than half of the
fact-checkers worldwide have adopted ClaimReview as of mid-2019.
In this paper, we propose the task of factoring fact-checks for au-
tomatically extracting structured information from fact-checking
articles. Exploring a public dataset of fact-checks, we empirically
show that factoring fact-checks is a challenging task, especially
for fact-checkers that are under-represented in the existing dataset.
We then formulate the task as a sequence tagging problem and
fine-tune the pre-trained BERT models with a modification made
from our observations to approach the problem. Through extensive
experiments, we demonstrate the performance of our models for
well-known fact-checkers and promising initial results for under-
represented fact-checkers.

CCS CONCEPTS

«+ Information systems — Information extraction; Markup
languages; World Wide Web; Structured text search.

KEYWORDS

ClaimReview; fact-checking; misinformation; computational jour-
nalism; information extraction; sequence tagging; BERT
ACM Reference Format:

Shan Jiang, Simon Baumgartner, Abe Ittycheriah, and Cong Yu. 2020. Fac-
toring Fact-Checks: Structured Information Extraction from Fact-Checking

“Work done while the first author was an intern at Google Research.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW °20, April 20-24, 2020, Taipei, Taiwan

© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380231

Simon Baumgartner”
Google Research
simonba@google.com

Cong Yu"
Google Research
congyu@google.com

Fact-check: ... The Facebook post says that "D.A.R.E. removed
cannabis from its list of gateway drugs." That claim seems to stem
from ... We rate this Facebook post False.

Claim: "D.A.R.E. removed cannabis from its list of gateway drugs."
Claimant: Viral image
Verdict: False

Figure 1: Fact-check example and its three factors. This para-
graph is excerpted from a fact-check published by PolitiFact on
May 30th, 2019 titled “D.A.R.E. still thinks marijuana is a dangerous
drug for kids”. In this example, the claim “D.A.R.E removed..” and
verdict “False” can be found in the text content of the fact-check,
while the claimant “Viral image” is replaced by “Facebook post”.
These factors are reported by PolitiFact.

Articles. In Proceedings of The Web Conference 2020 (WWW °20), April
20-24, 2020, Taipei, Taiwan. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3366423.3380231

1 INTRODUCTION

As a means to combat misinformation [1, 17], journalists conduct
research with evidence and logical reasoning to determine the ve-
racity and correctness of factual claims made in public, and publish
fact-checking articles (or fact-checks) on their news outlets [57].

Fact-checks play a significant role in the news ecosystem with a
shared journalistic purpose of rebuting false claims, therefore they
tend to share certain common structured information (called factors)
in their journalistic practices [57, 60]: a typical fact-check usually
introduces the claim to be checked and the claimant who made the
claim, and finally arrives at a verdict describing the veracity of the
claim. A fact-check could also describe the context where the claim
is made, provide evidence to support or attack the claim, etc. An
example of a fact-check with three reported factors (claim, claimant
and verdict) is shown in Figure 1. This paragraph is excerpted from
a fact-check published by PolitiFact in May 2019, titled “D.A.R.E.
still thinks marijuana is a dangerous drug for kids”, which reached
a verdict “False” to the claim “D.A.R.E removed cannabis from its
list of gateway drugs.” made by “Viral image” on Facebook.

These three factors (claim, claimant and verdict) can summarize
the main message of the fact-check for readers on a “too long; didn’t
read” agenda, and, more importantly, are structured information
that can be understood by algorithms for various applications [7,

https://doi.org/10.1145/3366423.3380231
https://doi.org/10.1145/3366423.3380231
https://doi.org/10.1145/3366423.3380231

WWW °20, April 20-24, 2020, Taipei, Taiwan

60, 64, 65], e.g., Google and Bing display these factors as structured
snippets for search results that correspond to a fact-check [3, 30].

However, the availability of such factors as structured informa-
tion is limited. Traditionally, journalists use creative language to
embellish their content and attract readers; therefore hiding these
factors within the text content of their fact-checks. Structured infor-
mation has only been recently made available with the global effort
on computational journalism [5, 8]. In the context of fact-checking,
a schema named ClaimReview [50] was developed to help anno-
tating these structured information on web pages: A fact-checker
can embed the ClaimReview markup in their HTML content of
fact-checks, or submit these factors manually through an online
ClaimReview markup tool [14]. This is a tedious process for fact-
checkers and distracts them from their core job of investigating
claims. As a result, Duke Reporters’ Lab reported that less than
half of their recorded fact-checkers have adopted this schema as of
July 2019, and only for a part of their published fact-checks [39].
Therefore, how to extract more structured information from the
remaining fact-checks becomes an emerging research concern.

In this paper, we propose the task of factoring fact-checks for
automatically extracting structured information from fact-checking
articles. Leveraging a public dataset of 6K fact-checks available
on DataCommons [9], we first conduct an exploratory analysis
of the task. We find that reported claimants and verdicts can be
mostly found exactly in the text content of fact-checks, while claims
are mostly paraphrased from one or more sentences. In addition,
we find that these factors are heavily distributed in head and tail
sentences of fact-checks, albeit differently between well-known and
under-represented fact-checkers. In order to automatically extract
these factors, we formulate this task as a sequence tagging problem
and conduct several experiments by fine-tuning the state-of-the-
art pre-trained BERT models [10]. Our experiments focus on the
following research questions:

o How well can models extract claims, claimants and verdicts?
e Can model performance be improved with modifications?
e Can models trained on well-known fact-checkers generalize?

Our experiments demonstrate the performance of BERT models
on well-known fact-checkers, especially under the modification
made from our empirical observations. Although it is challenging
for models to generalize to under-represented fact-checkers whose
fact-checks are unseen during the training process, we demonstrate
promising initial results by conducting additional experiments. As
this task directly faces the misinformation problem and therefore
requires extremely high accuracy to be fully automated, we dis-
cuss several potential applications with the performance as is, e.g.,
pre-populating ClaimReview markups in a human-in-the-loop pro-
cess [14], or supporting other downstream tasks of computational
fact-checking [7, 60, 64, 65].

To summarize, we make the following contributions:

o Defined the task of factoring fact-checks to assist fact-checkers.

e Explored existing fact-checks and their reported factors to un-
derstand the challenges involved in the task.

e Modified and fine-tuned BERT models and conducted extensive
experiments to approach the task.

The rest of the paper is organized as follows: § 2 introduces back-
ground and positions our work around related areas, § 3 explores

Jiang, et. al.

No, 'newspaper isn't an acronym for 'north, east, west, south ...
https://www.politifact.com » statements > sep » facebook-posts » no-newsp... v

Claim: Says the word newspaper stands for "north, east, west, south, past and present event
report.”

Claimed by: Facebook posts

Fact check by PolitiFact: Pants on Fire

(a) Google snippet. A fact-check from PolitiFact is displayed.

No, ‘newspaper’ is not an acronym of ‘North, East, West ...
https://africacheck.org/fbcheck/no-newspaper-is-not-an-acronym-of-north-east-west... v

Claim: ‘Newspaper' is an acronym of ‘North, East, West, South, Past and Present Events Report’

P False - Fact checked by ResultPartUpdater

(b) Bing snippet. A fact-check from Africa Check is displayed.

Figure 2: Structured fact-check snippets. When searching a
made-up explanation of the word “newspaper”, fact-checking fea-
tures are displayed by both Google and Bing.

data, § 4 formulates the task and introduces the model, § 5 reports
the results of our experiments, § 6 discusses potential applications,
limitations and future work, and finally concludes.

2 BACKGROUND

Fact-checks have been around since early 2000s and came to a
broader public consciousness in 2016 [16], directly in response
to the misinformation epidemic [1, 17]. In this section, we briefly
introduce the background of misinformation and fact-checking, and
situate our task in the broader scope of computational linguistics.

2.1 Misinformation and Fact-Checking

There have been significant efforts on understanding misinforma-
tion from both researchers [34] and practitioners [62]. Early work
on misinformation discussed its psychological foundations [42, 49,
61], economic incentives [1, 13] and social impact [27, 59]. Mean-
while, studies from the computational community were mostly
focused on detecting misinformation on the web [51]: these studies
modeled the problem as a classification task and utilized various
features (e.g., stylistic differences [12, 46, 58], public responses [27-
29]) to access the trustworthiness of information. Although solid
results were reported, these models heavily rely on the inflamma-
tory and sensational language used by misinformation to instigate
its readers, instead of verifying the information per se [45].

Fact-checking, as a complementary approach (arguably) orthog-
onal to stylistic features and public opinions, rebuts misinformation
by checking the veracity of individual factual claims [16, 57, 60].
Fact-checking is a time-consuming process done by journalists col-
lecting evidence and writing articles (i.e., fact-checks). Although
recent studies explored the potential of adding automation to sev-
eral stages of this process (e.g., discovering check-worthy claims
from large corpus [20-22], checking existing knowledge graphs for
evidence [7, 64, 65]), high quality fact-checks are still scarce.

As the availability of fact-checks is limited, the utilization of fact-
checks becomes of vital importance. Platforms have developed a
variety of applications to utilize fact-checks, e.g., downranking [6],
moderation [25, 26]. An application promulgated by search engines

Factoring Fact-Checks

(i.e., Google [30] and Bing [3]) is enriching result pages with fact-
checking features to maximize the exposure of high quality fact-
checks by displaying structured snippets of their factors when
searching a relevant query [60]. Figure 2 shows examples of such
structured snippets from Google (Figure 2a) and Bing (Figure 2b)
when searching a made-up explanation of the word “newspaper”.
Such application relies on structured factors reported by fact-
checkers. However, less than half of fact-checkers reported factors
for their fact-checks as of July 2019, according to Duke Reporters’
Lab [39]. Our task provides an upstream support for this process,
as we expect more structured factors can be obtained with the help
of factoring fact-checks. Specific use cases and other downstream
applications that can benefit from our task are discussed in § 6.

2.2 Extracting, Mining and Verifying Claims

There are several existing tasks in the broader scope of computa-
tional linguistics that are related to our task.

Claim extraction (or detection, identification) is a task of finding
factual claims in an article. The target claim could be either context
dependent [36] or independent [38]. In the fact-checking context,
ClaimBuster is a popular system that ranks claims by “checkwor-
thiness” in news articles or political speeches [21, 22]. In § 5, we
apply this tool as a baseline method for the claim factor, and show
that the most “checkworthy” claim in a fact-check is often not the
fact-checked one.

Argument mining is a more general task of labeling arguments
in an article, including both claim extraction and relationship (e.g.,
supporting or attacking, being premise or evidence) prediction
between arguments [4]. This task is often formulated as a sentence
classification or boundary detection problem, and its research has
been applied to many forms of literature, including persuasive
essays [11, 52], scientific publications [54], Wikipedia articles [2, 48],
debate scripts [19, 43], etc. Our task can be approximately viewed
as a specific case of relationship prediction for fact-checks, as we
aim to extract the target claim and the verdict that supports or
attacks the claim, except with different task formulation and context.
In addition, we focus on only two factors instead of labeling the
argument structure of the entire fact-check.

Claim verification is a recently proposed task, that takes a claim
and the corresponding context where claim is made as inputs, and
outputs a binary verdict on whether the context supports or rejects
the claim [55, 56]. In our task, the claim is unknown and the verdict
is free text: we take a fact-check as input, and output the claim and
its verdict simultaneously, along with its claimant.

3 DATA EXPLORATION

DataCommons hosts a dataset of URLSs for fact-checks [9]. We use
an internal Google tool to extract main article text from these URLs,
filter out non-English fact-checks and keep the remaining 6,216
ones for our data exploration. These fact-checks are usually long
articles, with 1,038 words and 24.4 paragraphs on average.

Each fact-check is labeled with its three factors: claim, claimant
and verdict, reported by its fact-checker. Claims are usually one or
two sentences, with 22.2 words on average. Claimants are mostly
names of people or organizations, with 2.2 words on average. Ver-
dicts are mostly adjective phrases and 2.5 words on average.

WWW 20, April 20-24, 2020, Taipei, Taiwan

politifact.com
factcheck.org 4
washingtonpost.com -
factly.in

Well-known

Under-represented

africacheck.org
Others 4

Fact-checker

T T T T
0 1000 2000 3000 4000
of fact-checks

Figure 3: Who are the fact-checkers? the number of fact-checks
follows a power law distribution over fact-checkers, where “well-
known” (top 5) fact-checkers publish 94% of fact-checks.

In this section, we explore several questions of the fact-check
dataset to understand our task.

3.1 Who Are the Fact-Checkers?

We first answer the question who the fact-checkers are. As shown
in Figure 3: the number of fact-checks follows a power law distri-
bution over fact-checkers, where top 19% (5/27) of fact-checkers
publish 94% (5,868/6,216) of fact-checks and 40% (11/27) of fact-
checkers have reported only a single fact-check. Notably, PolitiFact
dominates this dataset with 63% (3,915/6,216) reported fact-checks.

In the rest of the paper, we refer to the top five fact-checkers as
“well-known” ones, as they are reputed journalistic organizations
that are heavily focused on fact-checking and have specialized
“fact-check” columns on their websites. Among them, three fact-
checkers (PolitiFact, FactCheck.org and the Washington Post) are
US-based and have been contributing to fact-checks for more than
10 years. The other two fact-checkers are also well-known in their
respective markets: Factly.in is from India and Africa Check is from
Africa, both founded in 2012. The rest of the 22 fact-checkers are
“under-represented” (i.e., with few samples) in this dataset. These
fact-checkers could be a) newly established fact-checking teams
from reputed journalistic organizations (e.g., Australian Associated
Press), b) well-known news agencies doing occasional fact-checking
(e.g., CNN, the Verge), or ¢) new coming agencies for localized fact-
checking (e.g., factcheckNI for Northern Ireland). In § 5, we discuss
how this split affects our experimental design.

Overall, this dataset records more than one third of all fact-
checkers that verified signatories of the International Fact-Checking
Network (IFCN) code of principles [24], and contains all the well-
known fact-checkers except Snopes, therefore it is a reasonably
representative sample of the current fact-checking ecosystem.

3.2 Can Factors Be Found in the Fact-Check?

Next, we answer the question if factors can be found in the fact-
check article. In the introductory example shown in Figure 1, the
claim “D.A.R.E. removed cannabis from its list of gateway drugs.”
and verdict “False” can be both matched in the text content of the
fact-check, while the claimant “Viral image” cannot. Instead, the
fact-check uses “Facebook post” as the claimant.

To answer this question for all fact-checks in the dataset, we
start with exact string matching between factors and fact-checks.
We find that most verdicts (76%, 4,743/6,216) and claimants (80%,

WWW °20, April 20-24, 2020, Taipei, Taiwan

2089

N
o
o
o

1500
1000
500

of fact-checks

0 1 2 3 4 5 6 7+
of matched claims

(a) Can claims be found? 79% claims can be
matched in fact-checks and 45% are matched
more than once.

3509

1Y)

< 3000

[}

S

& 2000

]

£

w1000 805

* B9 144 82 51 107
01+ e e e

T
0 1 2 3 4 5 6 7+
of matched claimants

(b) Can claimants be found? 80% claimants can
be matched in fact-checks and 24% are matched
more than once.

Jiang, et. al.

4000 2913
3000
2000

1000 749

of fact-checks

0 1 2 3 4 5 6 7+
of matched verdicts

(c) Can verdicts be found? 80% verdicts can
be matched in fact-checks and 16% are matched
more than once.

Figure 4: Can factors be found in the fact-check? Around 80% of factors can be roughly matched in fact-checks based on a fuzzy

matching rule, and most of them are matched only once.

4,988/6,216) can be matched in the fact-check, while claims are
more difficult and match only 32% (2,000/6,216). This number is
counter-intuitive for claims, as we expect the fact-checked claim
should appear more frequently in the text content of fact-checks.

After reading through several examples of claims and fact-checks,
we find that although most claims are not exactly repeated in the
text content of fact-checks, they are mostly paraphrased from one or
more sentences, e.g., in Figure 2, the reported claim from PolitiFact
“Says the word newspaper stands for ‘north, east, west, south, past
and present event report.” is paraphrased to ““newspaper’ is an
acronym for ‘North, East, West, South, Past and Present Report.”
in the fact-check. To find these paraphrased factors, we develop
a fuzzy matching rule: we first traverse each paragraph and keep
the ones that contain at least a certain percentage of the reported
factors, and then find the minimum window substring! [35] of the
overlap from the paragraph as the approximate match for the factor.

To choose a reasonable threshold for above-mentioned percent-
age, manually check 20 fact-checks and matched factors under a
spectrum of thresholds. We find that setting the overlap thresh-
old around two thirds gives the best match without introducing
false positives (i.e., incorrectly matched factors). We apply the same
threshold for all factors: For claims, this allows us to ignore certain
paraphrase and conjugation (e.g., “says/said/saying”); For claimants
and verdicts, this threshold represents an exact match for short
factors less than or equal to two words, e.g., “False”, “Mostly false”,
“John Doe”;? and allows some flexibility for more than two words,
e.g., the claimant “John M Doe” can be matched without the middle
name “M”. After matching, we again manually check 100 random
samples and find no false positives.

Figure 4 shows the histograms of matched factors. Note that
factors can be matched zero times or more than once. Under fuzzy
matching, more claims (79%, 4,881/6,216) can be matched in fact-
checks and 45% (2,792/6,216) are matched more than once (Fig-
ure 4a). The number for matched claimants is also slightly increased,
with 80% (5,003/6,216) matched and 24% (1,494/6,216) matched more
than once (Figure 4b). Matched verdicts are roughly the same, 80%
(5,000/6,216) verdicts are matched and 16% (1,025/6,216) are matched
more than once (Figure 4c). In general, this observation suggests

!Comparison at word-level and case-insensitive.
286% (5,338/6,216) of claimants and 79% (4,915/6,216) of verdicts are of less than or
equal to two words.

that around 80% of factors can be roughly matched in fact-checks,
the remaining ones are framed to the extend that exceeds our al-
lowed threshold.

3.3 Where Are the Factors in the Fact-Check?

Our final question is where the factors are in the fact-check if they
are matched. To answer this, we normalize the locations of matched
factors by the number of words in the fact-check. This results in a
relative position measure ranging from 0 to 1 for each factor in each
fact-check, where 0 represents the head and 1 represents the tail of
the fact-check. Then, we estimate the probability density functions
(PDFs) for the relative position measure of each factor, and plot
them in Figure 5. Recall that well-known fact-checkers publish
94% of fact-checks, the PDFs of relative factor positions from all
fact-checks would mostly reflect the distribution of well-known
ones. Therefore, we estimate separate PDFs for well-known and
under-represented fact-checkers in addition to the overall PDFs to
compare their difference.

As shown in Figure 5, there are two high-level observations that
apply in general for all factors: a) factors distribute heavily on head
(<0.15) and tail (>0.85) sentences of fact-checks, an observation that
we later utilize for model design in § 4, and b) overall distributions
(thick grey lines) are similar to the distribution of well-known
fact-checkers (colored dashed lines) as expected.

For claims, Figure 5a shows that claims are distributed differ-
ently for fact-checks from well-known fact-checkers and under-
represented ones (Mann-Whitney U = 2.1 X 103):3 Claims are
found on both head (<0.15, 41%) and tail (>0.85, 28%) sentences from
well-known fact-checkers, but mostly head (<0.15, 53%) sentences
from under-represented fact-checkers. This is because well-known
fact-checkers usually start their fact-check with an introductory
paragraph and end with a concluding one, both of which likely de-
scribes the checked claim. Under-represented fact-checkers usually
do not write the latter part, and most fact-checks only introduce
the claim in the beginning.

Claimants are distributed similarly between well-known and
under-represented fact-checkers. The distribution for well-known
ones is slightly shifted to the left (U = 1.1 x 107"*"), as shown in
Figure 5b. All claimants are heavily distributed on head sentences

3%p < 0.05 " p < 0.01; ™ p < 0.001

Factoring Fact-Checks

All fact-checkers
= = Well-known

>
.‘Z'. 2 = Under-represented I‘\\
] \
Q3

0

T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Relative position of matched claims

(a) Where are the claims? Claims from well-
known fact-checkers are distributed on both head
(<0.15, 41%) and tail (>0.85, 28%) sentences of fact-
checks, but mostly heads (<0.15, 53%) from under-
represented fact-checkers. The difference is sig-
nificant (U = 2.1 x 108™").

All fact-checkers
== = Well-known

> 4
= == Under-represented
c
]
a 2
0

|l T T T T 1

0.0 0.2 0.4 0.6 0.8 1.0

Relative position of matched claimants
(b) Where are the claimants? Claimants from
well-known and under-represented fact-checkers
are distributed similarly, heavily on head sen-
tences (<0.15, 62% for well-known ones and 66%
for under-represented ones). The difference is sig-
nificant (U = 1.1 x 107°").

WWW 20, April 20-24, 2020, Taipei, Taiwan

8 All fact-checkers ’l
> 6 == = Well-known 1
= = Under-represented 1
g4 I
(=]

2 1

]
0

T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Relative position of matched verdicts
(c) Where are the verdicts? Verdicts from well-
known fact-checkers are distributed on the very
end of the fact-check (>0.85, 73%), but mostly head
(<0.15, 59%) sentences from under-represented
fact-checkers. The difference is significant (U =
5.6 % 105,

Figure 5: Where are the factors in the fact-check? Factors distribute heavily on head (<0.15) and tail (>0.85) sentences of fact-checks,

and overall distributions are similar to the distribution of well-known fact-checkers.

of the fact-checks (<0.15, 62% for well-known fact-checkers and
66% for under-represented ones).

For verdicts, Figure 5¢ shows different distributions of relative po-
sitions between well-known and under-represented fact-checkers
(U = 5.6 X 10°™™). For well-known fact-checkers, the verdicts are
matched mostly on the very end of the fact-check (>0.85, 73%), usu-
ally in the last several words. This reflect the journalistic style of
well-known fact-checkers, especially PolitiFact and The Washing-
ton Post, whose verdicts are based on their own rating systems and
are reached in the very end. These verdicts usually act as comple-
ments to linking the verb to be, e.g., “We rate it Pants on Fire!” by
PolitiFact and “It earns Four Pinocchios.” by the Washington Post.
On the contrary, under-represented fact-checkers tend to introduce
their verdicts in the beginning of the fact-check (<0.15, 59%), and
their verdicts are usually adjectives used to modify nouns, e.g., “A
false rumor claims..”. These fact-checks also have no concluding
paragraphs in the end, therefore verdicts can only be found in the
head sentences.

4 TASK AND MODELS

Data exploration shows that most factors can be fuzzily matched
in fact-checks. In this section, we formulate the task of factoring
fact-checks as a computational linguistic task and introduce our
models for the task.

4.1 Task Formulation

In general, certain linguistic patterns can be found when a factor
appears in the fact-check. These linguistic patterns can be roughly
categorized to two types: the languages used by the factor per se
and its surrounding context.

4.1.1 Linguistic patterns. Claims usually appear following certain
verbs as context, e.g., “(someone) claimed..”, “(someone) said..”,
“(an image/post) shows..”, etc., although the beginning of the claim
might not be directly adjacent to these verbs (as additional infor-
mation can be inserted, e.g., “claimed, at somewhere, that..”). In
addition, the languages used by claims are mostly factual sentences,
and sometimes contains quotation marks, numbers or statistics,

entities, etc., e.g., “A 1988 exorcism took place in the only house

still standing after Hurricane Ike” is a claim checked by PolitiFact
which contains the year “1988” and the entity “Hurricane Ike”.

Claimants, opposite to claims, are usually followed by above-
mentioned verbs as context (i.e., “someone”, "an image/post” in
previous examples), and they are usually named entities such as
persons (e.g., politicians, celebrities) or organizations (e.g., news
agencies, social media platforms).

Verdicts are mostly adjective words or phrases that describe ve-
racity, e.g., “true”, “mostly true”, “false”, or phrases from specialized
ratings systems, e.g., “pants on fire” by PolitiFact and the “Pinoc-
chio” system by the Washington Post. Occasionally, verdicts can
also be descriptive text, e.g., “out of context because..”, “outdated
as of..”. In terms of context, verdicts are often explicitly pointed
out by a concluding sentence, e.g., “we rate this claim true”, but it
could also be embedded in sentences modifying nouns, e.g., “a false
rumor claims..”.

4.1.2 Sequence tagging. Combining these linguistic patterns to-
gether, it is implausible to build and expensive to maintain a rule-
based system that matches patterns to extract these factors. Instead,
we formulate the extraction task as a computational linguistic task,
the sequence tagging problem, that can be approached by probabilis-
tic models.

In general, the goal of the sequence tagging problem is to prob-
abilistically estimate the distribution of labels to each word in a
sequence. This is a common problem that are shared by a number of
existing tasks: Part-of-speech tagging task assigns a part-of-speech
label (e.g., noun, verb) to each word in a sentence [40, 47]; Named
entity recognition task assigns a entity label (e.g., person, orga-
nization, country) to each word in given text [33, 41]; Extractive
summarization task assigns a binary label representing if a word
should belong to the summary [18, 63], etc.

The expected input of the sequence tagging problem is a se-
quence of words, and the output is an equal-length sequence of
labels (i.e., a label for each word). In our task, there are three posi-
tive labels (i.e., claim, claimant and rating) representing if a word
should belong to a factor, and a negative label representing a word
not belonging to any factors.

WWW °20, April 20-24, 2020, Taipei, Taiwan

Claim: The earth is flat . Claimant: John Doe Verdict: False

Fluent tagger:

John M Doe made a false claim that the earth is actually 100% flat

Concise tagger:

John M Doe made a false claim that the earth is actually 100% flat

Figure 6: Fluent and concise tagger. The fluent tagger selects
indexes of the entire span of matched factors, i.e., “John M Doe” as
the claimant and all words starting from “the” as the claim; The
concise tagger indexes of only the overlapping words, i.e., skipping
non-overlapping words “M” for the claimant and “actually 100%”
for the claim.

4.1.3 Generating ground-truth labels. Recall that fact-checks and
its factors are available in our data and we developed a fuzzy match-
ing rule in § 3. This information can be used to generate equal-
length sequences as labels for the sequence tagging problem.

For a fact-check, we first initialize an equal-length sequence with
all negative labels, and then traverse through all matched factors
and replace negative labels with positive ones at selected indexes.
We propose two methods of selecting indexes: A fluent tagger that
selects indexes of the entire span of matched factors and a concise
tagger that selects indexes of only the overlapping words. As shown
in Figure 6, the fact-check is “John M Doe made a false claim that
the earth is actually 100% flat” and its three factors are “The earth
is flat” as the claim, “John Doe” as the claimant and “False” as the
verdict.* The fluent tagger labels “John M Doe” as the claimant and
all words starting from “the” as the claim, while the concise tagger
skips non-overlapping words “M” for the claimant and “actually
100%” for the claim. Intuitively, the fluent tagger is focused more
on readability as it generates continues phrases as ground-truth,
but it also inevitably includes unessential details in the sequence.
On the contrary, the concise tagger is focused more on brevity as it
only selects essential words of factors, but the results could be less
readable if the matched factors miss several words.

4.2 Models

Sequence tagging is a traditional computational linguistic problem
that has been studied for decades from early statistical methods
(e.g., Hidden Markov models [31], conditional random fields [32]) to
current neural architectures (e.g., recurrent neural network [15]). To
date, the most applicable models usually leverage transfer learning
following the pre-training/fine-tuning paradigm. In short, during
pre-training process, models are trained on unlabeled data with
certain objectives, and during fine-tuning, models are initialized
with pre-trained parameters and then re-train on labeled data over
specific tasks.

4.2.1 BERT models. BERT (Bidirectional Encoder Representations
from Transformers) is a recently developed model [10]. Its pre-
training objective is to predict missing (i.e., masked) words in a
sentence conditional on both left and right context, as well as to

4This one sentence fact-check is hypothetical to demonstrate how indexes are selected.
In general, it is unlikely that all factors can be found in a single sentence.

Jiang, et. al.

Claim: D.AR.E. ..

R

Verdict: False

.

Claimant: Post

L ?

L L S

~Jekst post says that D.ARE. .. this false

that D.A.R.E. ... this false
Claimant: Post

A post says

Claim: D.AR.E. .. Verdict: False

Figure 7: The framework for factoring fact-checks. First, the
framework feeds the fact-check and its factors to a tagging pipeline;
Then, the framework passes sequences and labels to the BERT
model and uses cross entropy loss to fine-tune the model; Finally,
the predicted labels is fed to a recovery pipeline to obtain factors.
We feed our inputs one paragraph at a time and chunk paragraphs
exceeding maximum length. lead token [CLS] is replaced with
paragraph positions [HEAD], [BODY] or [TAIL].

predict the relationship between sentences (i.e., if a sentence is a
next sentence of another). During fine-tuning, it has shown the abil-
ity to achieve state-of-the-art performance on many computational
linguistic tasks by simply replacing input and output layers.

As BERT provides an easy access to the state-of-the-art without
any specific neural architecture design, we experiment with BERT
to explore the feasibility of our task. The specific framework of
model is shown in Figure 7. First, our framework feeds the fact-
check and its factors to a rule-based tagging pipeline described in
§4.1.3 to generate sequences and labels for the BERT model; Then,
our framework passes these sequences and labels to the BERT
model, obtains the activations of its last layer, and feeds them to an
output layer for predictions. During the process, cross entropy loss
is used to propagate errors and fine-tune the model [44]; Finally,
the predicted labels are fed to a rule-based recovery pipeline to
concatenate words and predict factors.

Note that BERT is designed for short sequences with a default
maximum sequence length of 512 while fact-checks are in general
longer sequences.’ A common strategy dealing with long sequences
is to truncate after the maximum length, because the head of the
sequence usually captures its essence for a number of tasks, e.g.,
summarization, classification. However, truncation is not fit for our
task as factors can be matched anywhere in the text content of a
fact-check, as shown in Figure 5. Therefore, we run our framework
on paragraph level and feed our inputs one paragraph at a time. If

51,038 words on average, and the length would increase with the wordpiece tokenizer
from BERT.

Factoring Fact-Checks

WWW 20, April 20-24, 2020, Taipei, Taiwan

Table 1: Test on well-known fact-checkers. Fact-checks from this test set are published by the same set of fact-checkers in the train
set. BERT models significantly outperforms baseline methods, and replacing [CLS] with paragraph positions help to improve the overall

performance of models.

Lead token Tagger Claim ROUGE-1 Claimant ROUGE-1 Verdict ROUGE-1
F1 ‘ Precision ‘ Recall ‘ Precision ‘ Recall F1 ‘ Precision ‘ Recall
Baseline 183 (183) 300 (.300) .141(.141) | .237(237) .181(.181) .352(352) | .660 (660) .638 (.638) .702 (.704)
[CLs] Fluent | .636(:853) .669 (.897) .633(.850) | .769 (:894) .803(.934) .759(.883) | .931(.975) .934(.979) .930 (.974)
Concise | .592 (:864) .615(.897) .596 (:870) | .784 (.907) .789(.913) .783(.906) | .938 (.971) .940 (.973) .938 (.970)
Paragraph Fluent | .638 (854) .674(902) .637(853) | .794(889) .821(919) .789 (884) | .940 (978) .942(980) .939 (.978)
position Concise | .646 (.866) .664 (.889) .652 (.873) | .839 (928) .852(.943) .834(.923) | .941(.975) .944 (979) .940 (.974)

a paragraph alone is longer than the maximum length, we chunk
the paragraph to sub-paragraphs and feed them to BERT in order.

4.2.2 Modification on lead token. In the original BERT, the lead
token of the input sequence is a special token [CLS], whose final
hidden state is used as the aggregated sequence representation
for the classification task. This design choice does not encode any
external information of the input sequence to the model, instead, it
learns a representation for [CLS] using the information from the
words in the sequence per se.

As we feed fact-checks to the our framework paragraph by para-
graph, applying the original BERT with [CLS] lead token would
loose the external information of the relative positions of para-
graphs. This information, however, is highly associated with the
appearance of factors: As shown in Figure 5, head and tail sentences
of a fact-check are much more likely to contain factors.

To utilize this external information, we make a simple modifica-
tion of BERT by replacing the uniform [CLS] token with a paragraph
position token, which could be either [HEAD], [BODY] or [TAIL]
to represent the relative position of a paragraph. We also associate
these tokens with three corresponding labels in the output sequence
(as shown in Figure 7). We expect this modification can help the
BERT model to learn better representations for each paragraph
based on its location, and therefore improving the ability to tag
factors in the paragraph.

5 EXPERIMENTS

Under the BERT framework described in Figure 7, we conduct sev-
eral experiments to explore the feasibility of factoring fact-checks.
Results reported in this section are based on the same public dataset
in section 3 to ensure the reproducibility of our results.

5.1 Setup

Our experimental setup is focused on answering the following
questions: How well can models extract claims, claimants and verdicts
respectively? Can model performance be improved with modifications
made from our empirical observations? Can models trained on well-
known fact-checkers generalize to under-represented ones?

5.1.1 Data splitting. A common data splitting strategy is randomly
sampling portions of the entire dataset to train, dev and test sets.
However, in § 3, we show that a) fact-checks follow a power law
distribution over fact-checkers, where the well-known ones pub-
lished most part of fact-checks (Figure 3), and b) well-known and

under-represented fact-checkers have different journalistic styles,
measured by the relative positions of factors in fact-checks (Fig-
ure 5). This suggests that models learned and evaluated by using
the common data splitting strategy would mostly reflect the perfor-
mance on well-known ones.

To comprehensively understand the performance of models on
both well-known and under-represented fact-checkers. We split
our data in the following way: First, we keep fact-checks from well-
known fact-checkers and do a 80%/10%/10% (4,694/587/587 samples)
random split to train, dev and test sets (i.e., the the same way as
the common strategy), where the train set is used to fine-tune
model parameters, the dev set is used for early stopping to prevent
overfitting, and the test set is used to evaluate the performance of
models on well-known fact-checkers; Second, we use the remaining
fact-checks from under-represented fact-checkers (348 samples) as a
second test set. This test set is used for evaluation only and invisible
during the training process, which allows us to understand how
models can generalize across different journalistic styles.

5.1.2 Baseline methods. Intuitive baseline methods are also exper-
imented to demonstrate the non-triviality of the problem.

For claims, our baseline methods leverage a popular system
named ClaimBuster, which scores the “checkworthiness” of sen-
tences in an article. The hypothesis is that the fact-checked claim
might also has the highest score of checkworthiness in a fact-check.
Therefore, we label the entire sentence with the highest score as
the claim.

For claimants, our intuition contains two points: a) claimants
are most likely to be a person or organization, and b) they are also
likely to be heavily mentioned in the fact-check. Therefore, we
run our fact-checks through a named entity recognition pipeline
implemented in spaCy [23], and label the most frequent person or
organization as the claimant.

For verdicts, we take a simplistic approach. For each fact-check,
we find the most frequently mentioned of all verdicts from the train
set and use it as the predicted verdict.

5.1.3 Model variants. Besides the baseline methods, we compare
four variants of models: a) the original BERT ([CLS] as the lead
token) and our modified version (paragraph positions as the lead
token) to understand whether replacing lead tokens improves model
performance, and b) input sequences tagged by fluent and concise
taggers.

WWW °20, April 20-24, 2020, Taipei, Taiwan

Jiang, et. al.

Table 2: Test on under-represented fact-checkers. Fact-checks from this test set are published by different fact-checkers than the ones
in the train set. The performance heavily deteriorates comparing to well-known fact-checkers. The paragraph tokens still helps to improve

both precision and recall for most cases.

Lead token Tagger Claim ROUGE-1 Claimant ROUGE-1 Verdict ROUGE-1
F1 ‘ Precision ‘ Recall ‘ Precision ‘ Recall F1 ‘ Precision ‘ Recall
Baseline 175(175) .372(372) .122(122) | .132(132) .114(114) .204(.204) | .392(392) .385(.385) .409 (.409)
[CLs] Fluent | 444 (725) .483 (788) .443(724) | .264 (567) 364 (782) .236 (.506) | .429 (.806) .484 (.910) .421(.792)
Concise | .386 (713) 406 (.748) .406 (749) | .323 (.650) .379 (.764) 304 (.612) | .451(.832) .484 (.892) .446 (.821)
Paragraph Fluent | .519(728) .566 (794) .517 (725) | .377(635) .510(.859) .342(576) | .367(733) .451(902) .359 (.718)
position Concise | .527 (738) .532(744) .559 (.781) | .462 (709) .549 (.843) .436 (.670) | .473 (:832) .520 (914) .467 (.822)

5.1.4 Hyperparameters and fine-tuning process. All reported results
use the same neural architecture, hyperparameters and vocabularies
(except for lead tokens) as the uncased base BERT model.® For lead
tokens, we label the first 3 paragraphs in a fact-check as [HEAD],
the last 3 paragraphs as [TAIL] and remaining as [BODY].”

The dev set is used for early stopping, and we observe that
models achieve lowest loss around 10K steps in general. For each
experiment, the fine-tuning process runs within an hour on a single
TPU node.

5.1.5 Evaluation metrics. The focus of the evaluation is how well
our models tag claims, claimants and verdicts respectively. Therefore,
we evaluate the performance of each factor separately by using
ROUGE scores [37]. Briefly, ROUGE scores are extensively used
evaluation metrics that compare N-gram overlaps between refer-
ences and predictions, e.g., ROUGE-1 refers to unigram, ROUGE-L
refers the longest N-gram. References in our experiments are re-
covered labels generated in subsubsection 4.1.3, and ROUGE scores
are undefined (i.e., uncounted) when references are empty. Each
ROUGE score measure contains F1, precision and recall scores,
where precision measures how much of the overlap is captured by
the prediction, recall measures how much of the overlap is captured
by the reference, and F1 is the harmonic mean of the precision and
recall. In the rest of the paper, we report F1, precision and recall
scores in ROUGE-1.

Note that if a factor is not tagged by the model, i.e., the prediction
is empty, the default ROUGE score of the factor is 0, which is a tight
score that heavily lowers the average. Depending on the application
(as we will discuss in § 6), a loose score can also be useful that only
evaluates when a factor is tagged, i.e., the prediction is non-empty.
The loose score optimistically measure how correctly our models
tag a factor as long as the factor is tagged, and the tight score is
the product of the loose score and the tagged percentage. In the
remaining tables, we report results in a format of: tight score (loose
score) in a cell.

%Cased and large BERT models are also experimented but yields similar results, there-
fore we omit the results in this paper.

Fact-checks have 24 paragraphs on average, and we split them on the 0.15/0.85
threshold shown in Figure 5.

5.2 Results

We first explore the overall feasibility of our task, and then discuss
each of above-mentioned questions. Due to space limit, tables in
this section are excerpted to highlight our observations.?

5.2.1 Overall performance. Table 1 reports results on the test set
of well-known fact-checkers. Fact-checks from this test set are
published by the same set of fact-checkers in the train set.

As shown, there is a large gap between all BERT models and
baseline methods. Note that baseline methods always return non-
empty predictions, therefore the tight score is strictly equal to the
loose score.

For claims, BERT models achieve tight scores of 0.59-0.65 and
loose scores of 0.85-0.87, with 69%-75% of claims tagged overall.
Tagging claimant is a relatively easy task, as BERT models achieve
tight scores of 0.77-0.84 and loose scores of 0.89-0.93, with 86-90%
claimants tagged. BERT models archive highest scores on tagging
verdicts, where the tight scores are 0.93-0.94 and loose scores are
0.97-0.98, with 96%-97% of verdicts tagged.

This demonstrates the overall feasibility of factoring fact-checks,
at least for well-known fact-checkers.

5.2.2 Paragraph position as lead token. Table 1 suggests that re-
placing [CLS] with paragraph positions helps to improve the overall
performance of models. Comparing tight scores of models with the
same tagger but different lead tokens, the ones with paragraph
position as lead tokens outperform in both ROUGE-1 precision and
recall (and therefore F1) than the ones with [CLS]. This improve-
ment is consistent across all three factors and both two taggers,
although sometimes by a small margin (e.g., F1 for verdict with
concise tagger improves from 0.938 to 0.941 by 0.003), sometimes
by alarger one (e.g., F1 for claim with concise tagger improves from
0.592 to 0.646 by 0.054).

5.2.3 Generalization. Table 2 reports scores of evaluation metrics
on the test set of under-represented fact-checkers. Fact-checks from
this test set are published by different fact-checkers than the ones
in the train set, therefore their journalistic styles are completely
unseen in the training process.

As shown, the performance heavily deteriorates comparing to
the results from well-known fact-checkers. For claims, BERT models
achieve tight scores of 0.39-0.44, 54%-61% tagged percentages with
[CLS], and 0.52-0.53, 71%-72% tagged percentages with paragraph

8Full comparison table of all experiments with ROUGE-1/ROUGE-L tight/loose
F1/precision/recall scores can be found in Supplementary Materials.

Factoring Fact-Checks

positions. The performance of tagging claimant drops even more,
where the best model achieves a tight score of 0.46 and a loose
score of 0.71, with 65% claimants tagged. Similarly, the best model
of tagging verdict achieves a tight score of 0.47 and a loose score of
0.83, with 57% of verdicts tagged.

Note that using paragraph positions as lead tokens still helps to
improve both precision and recall for tagging claims and claimants,
and verdicts with the concise tagger, with verdicts with fluent tagger
being the only exception.

5.2.4 Improving generalization. In order to improve the perfor-
mance on under-represented fact-checkers. We conduct an addi-
tional experiment by mixing half of the test set (174 samples) to the
train set and retrain the model, which makes the pattern of this test
set partially visible in the training process. As this is a small portion
compared to the original train set, the performance on the first test
set is largely unchanged. Therefore, we focus on the performance
on the remaining fact-check from under-represented fact-checkers.

As shown in Table 3. By mixing half into training, although model
performance of tagging claims is not improved, the performance of
tagging claimants and verdicts is improved. Also note that only 174
samples are left in this test set, therefore the results are relatively
unstable.

This experiment suggests that learning from some new fact-
checkers helps to improve the overall performance, at least for
claimants and verdicts, even when the sample size is very limited.
This demonstrates a promising direction: as more and more fact-
checkers adopt this scheme, the performance can keep improving
when patterns from more fact-checkers are captured by our models.

5.2.5 Error analysis. There are several common types of error
made by our models.

One type of error is not tagging, which results in a tight score
of 0 and is uncounted for loose scores. As tagging models estimate
likelihood of label distribution at word level, our model can assign
all negative labels to all words in the input sequence, therefore
resulting empty prediction after the recovery pipeline, especially
when the linguistic patterns or context for a factor is unseen or
hard to capture. This happens frequently on the test set of under-
represented fact-checkers where most of their journalistic styles
are different from the known patterns.

The (arguably) worst type of error is tagging the completely
wrong factor, which results in near 0 for both tight and loose scores.
This is likely to happen when the false positive uses the same words
as high-frequency true positives, e.g., the word “false” has a high
likelihood of being a verdict. In addition, similar context could
also confuse our models to yield incorrect predictions, e.g., words
after “[someone] claimed that..” until a punctuation is likely to
be assigned with claim labels, even when they are indeed not the
fact-checked claim.

Another type of error is under- or over- tagging, which could re-
sult in a score from near 0 to near 1. This usually happens when our
models miss or extend tags to several words such as “said”, “claims”,
etc. Under- (over-) tagging can also happen when the ground-truth
factor is extremely long (short), e.g., when the reported claimant
has a long title such as “the 45th and current president of the United
States Donald Trump”, our models tend to tag only the name of the
person “Donald Trump”, which results in a low F1 score of 0.33.

WWW 20, April 20-24, 2020, Taipei, Taiwan

Mostly, our models tag perfectly (a score of 1) if the factor follows
the majority patterns, e.g., when a claim is quoted by quotation
marks, or verdict being distinctive words, e.g., “Pants on Fire”, the
“Pinocchio” system used by the Washington Post.

6 DISCUSSION

Our experiments demonstrate the overall feasibility of factoring
fact-checks, especially for well-known fact-checkers. However, as
this task directly faces the misinformation problem, extremely high
accuracy is expected to fully automate this process.

Instead, in this section, we discuss several human-in-the-loop ap-
plications that can benefit from our models with the performance as
is. We also present limitations of our work and potential directions
for future research.

6.1 Applications

There are two types of applications that can benefit from our task:
Human-in-the-loop user-facing applications, most notably, obtain-
ing ClaimReview markups from fact-checks; And downstream
engineer-facing applications, e.g., knowledge-graph based fact-
checking, fact-check identification, etc.

6.1.1 Pre-populating ClaimReview. Currently, there are two ap-
proaches of providing ClaimReview markups for fact-checkers to
Google and Bing.

The first approach is to embed ClaimReview markups in the
HTML content of the website. As shown in Figure 8, the fact-checker
includes a JSON encoded snippet within the <script> tags of the
HTML content, and then search engines can identify this field
and store structured information in their database. This process
is currently entirely manual, and our models provide an opportu-
nity to optimize it by pre-populating the claim (“claimReviewed”),
claimant (“itemReviewed” — “author” — “name”) and verdict (“re-
viewRating” — “alternateName”) fields.® After pre-population, the
fact-checker can then verify and modify the snippet if needed to
make sure this information is accurate.

The second approach is to submit required information through
a fact-check markup tool developed by Google [14]. As shown in
Figure 9, current user interface allow fact-checkers to first submit
an URL, and then manually type in the ClaimReview markup in-
formation (the claim and verdict are required, the claimant and
others are optional) and finally submit. Our task provides a similar
opportunity for pre-population by deploying models on the server
side: After a URL is submitted, our models can read through the
text content of the fact-check and returns tagged factors, and then
the fact-checker can verify, modify (if needed) and submit them.

6.1.2 Plug-ins for downstream applications. Our task can provide
upstream support for a number of downstream applications on
fact-checking, e.g., structured fact-check data for automated fact-
checking tasks [7, 64, 65], claims for relevant document retrieval
task [60], signals for identifying fact-checks, etc. These applications
can directly take the predicted factors from our trained models
as input by running models on an archive of existing fact-checks.
Alternatively, neural architectures can use our models as a plug-in

Other fields in this markup are either fixed (e.g., “@context”, “@type”), trivial to
pre-populate (e.g., “datePublished”, “url”), or optional.

WWW °20, April 20-24, 2020, Taipei, Taiwan

Jiang, et. al.

Table 3: Test on under-represented fact-checkers by mixing half to train set. Model performance of tagging claims is not improved,
the performance of tagging claimants and verdicts is improved. This demonstrates a promising direction: as more and more fact-checkers
adopt this scheme, the performance can keep improving when patterns from more fact-checkers are captured by our models.

Train set Tagger Claim ROUGE-1 ‘ Claimant ROUGE-1 Verdict ROUGE-1
F1 ‘ Precision ‘ Recall ‘ ‘ Precision ‘ Recall ‘ F1 ‘ Precision ‘ Recall

Well-known Fluent .519 (.728) .566 (.794) 517 (.725) | .377 (.635) .510 (.859) .342 (.576) .367 (.733) .451 (.902) .359 (.718)
ones only Concise .527 (.738) .532(.744) .559(.781) | .462 (.709) .549 (.843) .436 (.670) 473 (.832) 520 (.914) .467 (.822)
under-repre Fluent .495 (.761) .540 (.830) .489 (.752) | .550 (.717) .639(.832) .528 (.688) | .475(.712) .573(.859) .469 (.704)
sented mixed Concise 519 (.782) .544 (.819) .536 (.807) | .575(.781) .599(.813) .581(.789) | .482(.797) .562(.931) .464 (.768)
<head> Claim Review #1
<title>The world is flat</title>
zscript type="application/ld+json"> Claim reviewed

"@context": "https://schema.org", What the person or entity claimed to be true

"@type": "ClaimReview",

"datePublished": "2016-06-22",

"url": "http://example.com/news/science/worldisflat.html", Claim date o

"claimReviewed": "The world is flat", When the person or entity made the claim.

"itemReviewed": {
"@type": "Claim",
"author": {
"@type": "Organization",
"name": "Square World Society"
}
e
"reviewRating": {
"@type": "Rating",
"alternateName": "False"
}
}
</script>
</head>

Figure 8: HTML snippet of ClaimReview markups. The fact-
checker adds a JSON encoded snippet within the <script> tags and
search engines can identify this field. Our models can be used to
pre-populate claim, claimant and verdict fields.

component and propagate errors for specific tasks. However, the
quality of service guarantee is then left for specific downstream
applications to consider.

6.2 Limitations and Future Work

Our task focuses on three essential factors in fact-checks: claims,
claimants and verdicts. However, fact-checks can contain more
factors in their article structures, e.g., (from an argument mining
perspective) premise, evidence, etc [4]. Extracting these additional
factors, or moreover, parsing the entire argument structure of fact-
checks, is a future direction that can benefit not only fact-checking
applications, but also document understanding in general.

In addition, we experiment with BERT as a rule-of-thumb tool.
Although BERT has shown to achieve state-of-the-art performance
on general computational linguistic tasks [10], there is still design
space for specific architectures for our task. It is also debatable
whether formulating the task as a sequence tagging problem is
the optimal solution. Our proposed framework has concatenated
pipeline structure (i.e., rule-based tagging and recovering) which
can accumulates errors, e.g., as shown in Figure 4, some factors still
cannot be found as a result of heavy paraphrasing. Although we

Claim appearance Original appearance

URL for a document where this claim appears.

+Add another claim appearance

Claim author name

Name of the person or entity who made the claim.

Rating text

Your written assessment of the claim.

Figure 9: User interface of the fact-check markup tool. Cur-
rent user interface allow fact-checkers to submit an URL, manually
type required information and then submit. Our models provide an
opportunity for pre-population.

also explored the possibility of formulating the task as a language
generation problem under the end-to-end encoder-decoder frame-
work [53], we were unable to achieve satisfactory performance,
possibly due to limited data, therefore the results are omitted in
this paper.

With more data of fact-checks made available, future work can
investigate the possibilities of different task formulations, neural
architectures, and more automated applications.

6.3 Conclusion

In this paper, we proposed a task of factoring fact-checks for au-
tomatically extracting structured information (claims, claimants
and verdicts) from fact-checks. Our data exploration showed that:
a) Under fuzzy matching rules, most of factors can be matched
from the text content of fact-checks; b) These factors are heavily
distributed in head and tail sentences of fact-checks, albeit differ-
ently between well-known and under-represented fact-checkers.
We then conducted several experiments on the feasibility of this
task, and showed that: a) Overall, BERT models achieve signifi-
cantly better performance compare to intuitive baseline methods.
b) Replacing BERT’s [CLS] tokens with paragraph positions helps

Factoring Fact-Checks

to improve the model performance. ¢) Although it is challenging for
models to generalize to under-represented fact-checkers, promising
initial results are achieved by mixing half of the fact-checks from
under-represented fact-checkers to the training process. Finally,
we discussed several potential applications such as pre-populating
ClaimReview markups in a human-in-the-loop process and sup-
porting other downstream tasks of computational fact-checking.

We hope that our work plays a role in the progressive process
of leveraging fact-checks to improve online information quality:
pre-population tools with the help of our models can encourage
more fact-checkers to provide ClaimReviews markups, which, in
turn, serves as training data to improve the model performance.

REFERENCES

[1] Hunt Allcott and Matthew Gentzkow. 2017. Social media and fake news in the

[2

(11

[12

[13
[14

[15

(16

[17

(18

[19

[20

[21

]

]

]

]

]

]

]

]

]
]

]

2016 election. Journal of Economic Perspectives 31, 2 (2017), 211-36.

Roy Bar-Haim, Indrajit Bhattacharya, Francesco Dinuzzo, Amrita Saha, and Noam
Slonim. 2017. Stance classification of context-dependent claims. In Proceedings of
the 15th Conference of the European Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers. 251-261.

Bing Blogs. 2017. Bing adds Fact Check label in SERP to support the ClaimReview
markup. https://blogs.bing.com/Webmaster-Blog/September-2017/Bing-adds-
Fact-Check-label-in-SERP- to-support- the- ClaimReview-markup

Elena Cabrio and Serena Villata. 2018. Five Years of Argument Mining: a Data-
driven Analysis.. In IJCAL 5427-5433.

David Caswell and Konstantin Dérr. 2018. Automated Journalism 2.0: Event-
driven narratives: From simple descriptions to real stories. Journalism practice
12,4 (2018), 477-496.

Facebook Help Center. 2019. How is Facebook addressing false news through
third-party fact-checkers? https://www.facebook.com/help/1952307158131536
Giovanni Luca Ciampaglia, Prashant Shiralkar, Luis M Rocha, Johan Bollen,
Filippo Menczer, and Alessandro Flammini. 2015. Computational fact checking
from knowledge networks. PloS one 10, 6 (2015), €0128193.

Sarah Cohen, Chengkai Li, Jun Yang, and Cong Yu. 2011. Computational journal-
ism: A call to arms to database researchers. (2011).

DataCommons. 2019. Fact-Check Dataset. https://datacommons.org/factcheck
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. 4171-4186.
Steffen Eger, Johannes Daxenberger, and Iryna Gurevych. 2017. Neural End-to-
End Learning for Computational Argumentation Mining. In Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). 11-22.

Song Feng, Ritwik Banerjee, and Yejin Choi. 2012. Syntactic stylometry for de-
ception detection. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers-Volume 2. Association for Computational
Linguistics, 171-175.

Matthew Gentzkow, Jesse M Shapiro, and Daniel F Stone. 2015. Media bias in the
marketplace: Theory. In Handbook of media economics. Vol. 1. Elsevier, 623-645.
Google. 2019. Fact-Check Markup Tool. https://toolbox.google.com/factcheck/
markuptool

Alex Graves, Santiago Fernandez, Faustino Gomez, and Jirgen Schmidhuber.
2006. Connectionist temporal classification: labelling unsegmented sequence
data with recurrent neural networks. In Proceedings of the 23rd international
conference on Machine learning. ACM, 369-376.

Lucas Graves. 2016. Deciding what’s true: The rise of political fact-checking in
American journalism. Columbia University Press.

Andrew Guess, Brendan Nyhan, and Jason Reifler. 2018. Selective Exposure to
Misinformation: Evidence from the consumption of fake news during the 2016
US presidential campaign. European Research Council (2018).

Vishal Gupta and Gurpreet Singh Lehal. 2010. A survey of text summarization
extractive techniques. Journal of emerging technologies in web intelligence 2, 3
(2010), 258-268.

Ivan Habernal and Iryna Gurevych. 2017. Argumentation mining in user-
generated web discourse. Computational Linguistics 43, 1 (2017), 125-179.
Naeemul Hassan, Bill Adair, James T Hamilton, Chengkai Li, Mark Tremayne,
Jun Yang, and Cong Yu. 2015. The quest to automate fact-checking. In Proceedings
of the 2015 Computation + Journalism Symposium.

Naeemul Hassan, Fatma Arslan, Chengkai Li, and Mark Tremayne. 2017. Toward
automated fact-checking: Detecting check-worthy factual claims by ClaimBuster.

In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 1803-1812.

[22]

[23

[24

[25

[26

[27

[28

[29

[30

[31]

(32]

[33

(34]

&
2

[36

[37

[38

[39

=
=

(41

[42

[43

[44]

[45

=
&

[47

(48

WWW 20, April 20-24, 2020, Taipei, Taiwan

Naeemul Hassan, Gensheng Zhang, Fatma Arslan, Josue Caraballo, Damian
Jimenez, Siddhant Gawsane, Shohedul Hasan, Minumol Joseph, Aaditya Kulkarni,
Anil Kumar Nayak, et al. 2017. ClaimBuster: the first-ever end-to-end fact-
checking system. Proceedings of the VLDB Endowment 10, 12 (2017), 1945-1948.
Matthew Honnibal and Ines Montani. 2017. spacy 2: Natural language understand-
ing with bloom embeddings, convolutional neural networks and incremental
parsing. To appear 7 (2017).

IFCN. 2019. Verified signatories of the IFCN code of principles.
//ifencodeofprinciples.poynter.org/signatories

Shan Jiang, Ronald E. Robertson, and Christo Wilson. 2019. Bias Misperceived:
The Role of Partisanship and Misinformation in YouTube Comment Moderation.
In Proceedings of the 13th International AAAI Conference on Web and Social Media
(ICWSM 2019).

Shan Jiang, Ronald E. Robertson, and Christo Wilson. 2020. Reasoning about
Political Bias in Content Moderation. In Proceedings of the 34th AAAI Conference
on Artificial Intelligence (AAAI 2020).

Shan Jiang and Christo Wilson. 2018. Linguistic Signals under Misinformation
and Fact-Checking: Evidence from User Comments on Social Media. Proceedings
of the ACM: Human-Computer Interaction (PACMHCI) 2, CSCW (November 2018).
Zhiwei Jin, Juan Cao, Yu-Gang Jiang, and Yongdong Zhang. 2014. News credibility
evaluation on microblog with a hierarchical propagation model. In Data Mining
(ICDM), 2014 IEEE International Conference on. IEEE, 230-239.

Zhiwei Jin, Juan Cao, Yongdong Zhang, and Jiebo Luo. 2016. News Verification
by Exploiting Conflicting Social Viewpoints in Microblogs.. In AAAL 2972-2978.
Justin Kosslyn and Cong Yu. 2017. Fact Check now available in Google Search
and News around the world. https://www.blog.google/products/search/fact-
check-now-available-google-search-and-news-around-world

Julian Kupiec. 1992. Robust part-of-speech tagging using a hidden Markov model.
Computer Speech & Language 6, 3 (1992), 225-242.

John Lafferty, Andrew McCallum, and Fernando CN Pereira. 2001. Conditional
random fields: Probabilistic models for segmenting and labeling sequence data.
(2001).

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. 2016. Neural Architectures for Named Entity Recognition. In
Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. 260-270.

David MJ Lazer, Matthew A Baum, Yochai Benkler, Adam J Berinsky, Kelly M
Greenbhill, Filippo Menczer, Miriam J Metzger, Brendan Nyhan, Gordon Penny-
cook, David Rothschild, et al. 2018. The science of fake news. Science 359, 6380
(2018), 1094-1096.

LeetCode. 2014. Minimum Window Substring. https://leetcode.com/problems/
minimum-window-substring

Ran Levy, Yonatan Bilu, Daniel Hershcovich, Ehud Aharoni, and Noam Slonim.
2014. Context dependent claim detection. In Proceedings of COLING 2014, the 25th
International Conference on Computational Linguistics: Technical Papers. 1489—
1500.

Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
In Text summarization branches out. 74-81.

Marco Lippi and Paolo Torroni. 2015. Context-independent claim detection for
argument mining. In Twenty-Fourth International Joint Conference on Artificial
Intelligence.

Joel Luther. 2019. Reporters’ Lab Launches Global Effort to Expand the Use of
ClaimReview. https://reporterslab.org/lab-launches-global-effort-to-expand-
claimreview

Lluis Marquez and Horacio Rodriguez. 1998. Part-of-speech tagging using deci-
sion trees. In European Conference on Machine Learning. Springer, 25-36.

David Nadeau and Satoshi Sekine. 2007. A survey of named entity recognition
and classification. Lingvisticae Investigationes 30, 1 (2007), 3-26.

Raymond S Nickerson. 1998. Confirmation bias: A ubiquitous phenomenon in
many guises. Review of general psychology 2, 2 (1998), 175.

Vlad Niculae, Joonsuk Park, and Claire Cardie. 2017. Argument Mining with
Structured SVMs and RNNs. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). 985-995.
Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How multilingual is Multi-
lingual BERT? arXiv preprint arXiv:1906.01502 (2019).

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Janek Bevendorff, and Benno
Stein. 2018. A Stylometric Inquiry into Hyperpartisan and Fake News. In Proceed-
ings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). 231-240.

Hannah Rashkin, Eunsol Choi, Jin Yea Jang, Svitlana Volkova, and Yejin Choi.
2017. Truth of varying shades: Analyzing language in fake news and political
fact-checking. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing. 2931-2937.

Adwait Ratnaparkhi. 1996. A maximum entropy model for part-of-speech tagging.
In Conference on Empirical Methods in Natural Language Processing.

Ruty Rinott, Lena Dankin, Carlos Alzate Perez, Mitesh M Khapra, Ehud Aharoni,
and Noam Slonim. 2015. Show me your evidence-an automatic method for
context dependent evidence detection. In Proceedings of the 2015 conference on

https:

https://blogs.bing.com/Webmaster-Blog/September-2017/Bing-adds-Fact-Check-label-in-SERP-to-support-the-ClaimReview-markup
https://blogs.bing.com/Webmaster-Blog/September-2017/Bing-adds-Fact-Check-label-in-SERP-to-support-the-ClaimReview-markup
https://www.facebook.com/help/1952307158131536
https://datacommons.org/factcheck
https://toolbox.google.com/factcheck/markuptool
https://toolbox.google.com/factcheck/markuptool
https://ifcncodeofprinciples.poynter.org/signatories
https://ifcncodeofprinciples.poynter.org/signatories
https://www.blog.google/products/search/fact-check-now-available-google-search-and-news-around-world
https://www.blog.google/products/search/fact-check-now-available-google-search-and-news-around-world
https://leetcode.com/problems/minimum-window-substring
https://leetcode.com/problems/minimum-window-substring
https://reporterslab.org/lab-launches-global-effort-to-expand-claimreview
https://reporterslab.org/lab-launches-global-effort-to-expand-claimreview

WWW °20, April 20-24, 2020, Taipei, Taiwan

empirical methods in natural language processing. 440-450.

[49] Robert J Robinson, Dacher Keltner, Andrew Ward, and Lee Ross. 1995. Actual
versus assumed differences in construal: “Naive realism” in intergroup perception
and conflict. Journal of Personality and Social Psychology 68, 3 (1995), 404.

[50] schema.org. 2019. ClaimReview schema. https://schema.org/ClaimReview

[51] Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. 2017. Fake news

detection on social media: A data mining perspective. ACM SIGKDD Explorations

Newsletter 19, 1 (2017), 22-36.

Christian Stab and Iryna Gurevych. 2017. Parsing argumentation structures in

persuasive essays. Computational Linguistics 43, 3 (2017), 619-659.

[53] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning

with neural networks. In Advances in neural information processing systems. 3104—

3112.

Simone Teufel, Advaith Siddharthan, and Colin Batchelor. 2009. Towards

discipline-independent argumentative zoning: evidence from chemistry and

computational linguistics. In Proceedings of the 2009 Conference on Empirical

Methods in Natural Language Processing: Volume 3-Volume 3. Association for

Computational Linguistics, 1493-1502.

[55] James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal.
2018. FEVER: a Large-scale Dataset for Fact Extraction and VERification. In
Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers). 809-819.

[56] James Thorne, Andreas Vlachos, Oana Cocarascu, Christos Christodoulopoulos,
and Arpit Mittal. 2018. The Fact Extraction and VERification (FEVER) Shared
Task. EMNLP 2018 80, 29,775 (2018), 1.

[52

[54

[57

[58

[59

[60

[65]

Jiang, et. al.

Andreas Vlachos and Sebastian Riedel. 2014. Fact checking: Task definition
and dataset construction. In Proceedings of the ACL 2014 Workshop on Language
Technologies and Computational Social Science. 18-22.

Svitlana Volkova, Kyle Shaffer, Jin Yea Jang, and Nathan Hodas. 2017. Separating
facts from fiction: Linguistic models to classify suspicious and trusted news
posts on twitter. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), Vol. 2. 647-653.

Soroush Vosoughi, Deb Roy, and Sinan Aral. 2018. The spread of true and false
news online. Science 359, 6380 (2018), 1146-1151.

Xuezhi Wang, Cong Yu, Simon Baumgartner, and Flip Korn. 2018. Relevant
document discovery for fact-checking articles. In Companion Proceedings of the
The Web Conference 2018. International World Wide Web Conferences Steering
Committee, 525-533.

Andrew Ward, L Ross, E Reed, E Turiel, and T Brown. 1997. Naive realism in
everyday life: Implications for social conflict and misunderstanding. Values and
knowledge (1997), 103-135.

Claire Wardle. 2017. Fake news. It’s complicated. First Draft News 16 (2017).
Kam-Fai Wong, Mingli Wu, and Wenjie Li. 2008. Extractive summarization using
supervised and semi-supervised learning. In Proceedings of the 22nd International
Conference on Computational Linguistics-Volume 1. Association for Computational
Linguistics, 985-992.

You Wu, Pankaj K Agarwal, Chengkai Li, Jun Yang, and Cong Yu. 2014. Toward
computational fact-checking. Proceedings of the VLDB Endowment 7,7 (2014),
589-600.

You Wu, Pankaj K Agarwal, Chengkai Li, Jun Yang, and Cong Yu. 2017. Computa-
tional fact checking through query perturbations. ACM Transactions on Database
Systems (TODS) 42, 1 (2017), 4.

https://schema.org/ClaimReview

	Abstract
	1 Introduction
	2 Background
	2.1 Misinformation and Fact-Checking
	2.2 Extracting, Mining and Verifying Claims

	3 Data Exploration
	3.1 Who Are the Fact-Checkers?
	3.2 Can Factors Be Found in the Fact-Check?
	3.3 Where Are the Factors in the Fact-Check?

	4 Task and Models
	4.1 Task Formulation
	4.2 Models

	5 Experiments
	5.1 Setup
	5.2 Results

	6 Discussion
	6.1 Applications
	6.2 Limitations and Future Work
	6.3 Conclusion

	References

